Vol.28, No.1, pp.53-64, February, 2016

전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 개발

양재근^{1*} · 김용범²

¹교수, 인하대학교, 건축공학과, ²석사과정, 인하대학교, 건축공학과

Development of Connection Details for a Double Split Tee Connection Without a Shear Tab

Yang, Jae Guen^{1*}, Kim, Yong Boem²

¹Professor, Department of Architectural Engineering, Inha University, Incheon, 22212, Korea ²Graduate Student, Department of Architectural Engineering, Inha University, Incheon, 22212, Korea

Abstract - The double split tee connection, a type of beam-to-column moment connection, exhibits different behavioral characteristics according to changes in the thickness of the T-stub flange, the gauge distance of the high-strength bolt, and the number and diameter of high-strength bolts. In general, the double split tee connection is idealized and designed so that a T-stub fastened to the top and bottom supports a flexural moment, and a shear tab supports a shear force. However, if the double split tee connection is applied to low-and medium-rise steel structures, the size of the beam member becomes small, and thus the shear tab cannot be bolted to the web of a beam. In this regard, this study was conducted to propose connection details to ensure that the double split tee connection with a geometric shape can display sufficient shear resisting capacity. To this end, experiments were conducted using full-scale specimens for the double split tee connection.

Keywords - Double split tee connection, Shear tab, Shear resisting capacity, Connection detail

1. 서 론

상·하부스플릿 티 접합부는 부분강접 접합부(full strengthpartially restrained connection)의 한 형태로 보통모멘트 골조 혹은 특수모멘트골조 등에 적합한 접합부로 분류된다 ^{[1],[2],[3],[4],[5],[6],[7],[8]}. 상·하부 스플릿 티 접합부의 한계상태 로는 보 플랜지에 체결된 고장력볼트의 전단파단, T-stub 스템의 순단면 파단, T-stub 플랜지의 휨항복 후 소성파단, T-stub 플랜지에 체결된 고장력볼트의 인장파단, T-stub 스템의 블록전단 파단, 보 플랜지의 전단파단, 기둥 플랜지 의 휨항복, 전단탭의 전단항복, 전단탭의 전단파단, 전단탭

Copyright © 2016 by Korean Society of Steel Construction *Corresponding author.

Tel. +82-32-860-7588 Fax. +82-32-866-4624 E-mail. jyang@inha.ac.kr 의 블록전단 파단, 전단탭-기둥 플랜지 용접부 파단, 전단 탭에 체결된 고장력볼트의 전단파단 등이 있다. 이러한 접합 부의 한계상태로 인하여 상·하부 스플릿 티 접합부가 파괴 되지 않도록 상·하부 T-stub은 작용하는 휨모멘트를 지탱 하고 전단탭은 전단력을 지탱하는 것으로 이상화하여 설계 되고 있다^{[9],[10],[11],[12],[13],[14]}. 그러나 상·하부 스플릿 티 접 합부가 작은 춤의 보 부재로 구성된 중·저층의 강구조물에 적용되는 경우에는 기하학적 형상에 의하여 전단탭을 적용 하지 못하는 상황이 발생한다. 이에 대한 방안으로 양재근 등은 해석적 연구를 통하여 하부 T-stub에 체결되는 고장력 볼트의 개수 혹은 직경을 증가시켜 추가된 고장력볼트가 전 단탭의 역할을 대신하여 전단력을 지탱하도록 하는 접합부 상세를 제안하였다^{[15],[16],[17],[18]}. 따라서 이 연구는 양재근 등 이 제안한 전단탭이 없는 상·하부 스플릿 티 접합부가 충분 한 강성, 강도, 에너지소산능력 등을 발현하는 가를 실험적 연구를 통하여 확인하기 위하여 진행하였다^{[1],[19],[20],[21]}.

Note.-Discussion open until August 31, 2016. This manuscript for this paper was submitted for review and possible publication on January 11, 2016; revised February 11, 2016; approved on February 17, 2016.

2. 전단탭이 없는 상·하부 스플릿 티 접합부에 대한 실험

2.1 접합부의 설계전단강도 및 설계휨강도

상·하부 스플릿 티 접합부의 설계전단강도는 식 (1)~(6) 로 정리되는 Fig. 1(a)에 나타난 전단탭의 한계상태를 검토 하여 파악하였다. 이를 통하여 산정한 설계전단강도는 Fig. 1(b)에 정리한 하부 T-stub에 추가적으로 체결할 고장력볼 트의 개수 및 직경 산정에 활용한다. 즉, 전단탭의 한계상태 를 검토하여 산정한 설계전단강도 값을 식 (2)을 적용하여 얻은 고장력볼트의 전단파단 강도 값으로 나누어 추가할 고

(a) Double split tee connection with a shear tab

(b) Double split tee connection without a shear tab

장력볼트의 개수 및 직경을 구한다. 이때 고장력볼트는 1면 전단이고 고장력볼트의 나사부가 전단면에 포함된 것으로 가정한다.

체결된 한 개의 고장력볼트의 지압강도:

$$\phi R_n = \phi(1.2L_c tF_u) \le \phi(2.4 dtF_u), \phi = 0.75$$
 (1)

체결된 한 개의 고장력볼트의 전단파단강도:

$$\phi R_n = \phi F_{nv} A_b, \phi = 0.75$$
 (2)

전단탭의 전단항복강도:

$$\phi R_n = \phi (0.6F_y A_{qv}), \phi = 1.0$$
 (3)

전단탭의 전단파단강도:

$$\phi R_n = \phi (0.6F_u A_{nv}), \phi = 0.75$$
 (4)

전단탭의 블록전단강도:

$$\phi R_n = \phi (0.6F_u A_{nv} + U_{bs} F_u A_{nt})
\leq \phi (0.6F_u A_{av} + U_{bs} F_u A_{nt}), \phi = 0.75$$
(5)

전단탭의 용접부 파단강도:
$$\phi R_n = \phi [0.6F_{E70}(0.7sL)], \phi = 0.75$$
 (6)

일반적으로 강구조물의 설계에 있어서 강 기둥-약 보 (strong column-weak beam) 설계개념을 적용한다. 그러 므로 이 연구에 있어서 기둥 패널존의 전단항복 및 기둥 플랜 지의 국부좌굴에 의한 기둥 부재의 파괴가 발생하지 않도록 식 (7) ~ 식 (8)를 적용하여 검토하였다. 또한 추가적으로 패 널존은 복판재(doubler plates)와 연속판재(continuity plates) 보강하였다. 상·하부 스플릿 티 접합부의 설계휨강 도는 식 (9)~식 (18)로 정리되는 T-stub 및 T-stub에 체결 된 고장력볼트의 한계상태를 검토하여 파악하였다. Fig. 2 은 설계휨강도 산정에 있어서 적용된 상·하부 스플릿 티 접 합부의 기하학적 형상변수를 나타낸다.

패널존의 두께 검토 식:
$$\phi R_n = \phi (0.6 F_y dt_w), \phi = 0.9$$
 (7)

기둥 플랜지의 두께 검토 식:

$$\phi R_n = \phi (6.25t_f^2 F_y) < P_u, \phi = 0.9$$
 (8)

보 플랜지에 체결된 고장력볼트의 전단파단강도 $M_{fail,1}$: $M_{fail,1} = 2NA_b(F_{V,bolt})d \cdot L_{TF1}$ (9)

여기서,

$$L_{TF1} = \frac{L - d_c}{L - d_c - (2S_1 + S_3)} \tag{10}$$

T-stub 스템의 순단면 파단강도
$$M_{fail2}$$
:
 $M_{fail,2} = F_{uT}w - 2(d_{bt} + 2)t_{stem} \cdot (d + t_{stem}) \cdot L_{TP2}$ (11)

Geometry for Other T-Stub Failure Modes

(a) Geometry for T-stub failure modes

여기서,

 $w = \min \left| \begin{array}{c} the \ flange \ \leq \ ngth \ of \ the \ T \\ the \ width \ of \ the \ T \ at \ the \ first \ of \ bolts \end{array} \right|$

$$w \le g_t + S_3 \tan \theta_{eff}$$

$$15^{\circ} \le \theta_{eff} = 60t_{stem} \le 30^{\circ}$$
(12)

$$L_{TF2} = \frac{L - d_c}{L - d_c - 2S_1} \tag{13}$$

T-stub 플랜지의 휨항복강도 M_{fail3}:

$$M_{fail,3} = \frac{(2a' - \frac{a_{bt}}{4})wF_yt_f^2(d - t_{stem})}{4a'b' - d_{bt}(b' + a')}$$
(14)

$$\begin{aligned} & \boldsymbol{\alpha} \mid \mathcal{I} \mid \boldsymbol{\lambda} \mid, \\ & \boldsymbol{a}' = \boldsymbol{a} + \frac{d_{bt}}{2} \\ & \boldsymbol{b}' = \boldsymbol{b} - \frac{d_{bt}}{2} \end{aligned} \tag{15}$$

T-stub 플랜지에 체결된 고장력볼트의 인장파단강도 M_{fail4} :

$$M_{fail,4} = n_{tb}(d + t_{stem}) \cdot (T_{ub} + \frac{wF_{yt}t_{f}}{16a'}) \cdot \frac{a'}{a' + b'}$$
(16)

보 플랜지의 순단면파단강도
$$M_{fail5}$$
:
 $M_{fail,5} = [F_{u,bm}Z_b - 2(d_{bt,hole} + 2)t_{fb}(d - t_{fb})]L_{TF3}$ (17)

여기서,

$$L_{TF3} = \frac{L - d_c}{L - d_c - 2(S_1 + S_3)}$$
(18)

2.2 접합부의 실험체 계획

전단탭이 없는 상·하부 스플릿 티 접합부의 강도 및 에너 지소산능력은 전단탭이 있는 상·하부 스플릿 티 접합부의 강도 및 에너지소산능력과 비교하였다. 이를 통하여 전단탭 이 없는 상·하부 스플릿 티 접합부의 적용 가능성을 평가하 고자한다. 전단탭이 없는 상·하부 스플릿 티 접합부의 실험 체를 구성하는데 있어서 하부 T-stub 플랜지에 추가된 고장 력볼트의 개수는 Table 1에 정리한 것과 같이 전단탭의 전단 파단 한계상태에 근거하여 식 (2)를 적용하여 Table 2와 같 이 구하였다. 두 가지 형태의 상·하부 스플릿 티 접합부 실험 체의 기하학적 형상변수는 Table 3에 정리하였다. Table 3 에 정리한 것과 동일한 기하학적 형상을 갖는 실험체는 각각 2개씩 제작하여 실험을 진행하였다. 상·하부 T-stub은 F10T-M20 고장력볼트를 적용하여 H-406x403x16x24 규 격의 기둥 부재와 H-588x300x12x20 규격의 보 부재에 체 결되었다. F10T-M20 고장력볼트는 165kN의 볼트축력이 발생하도록 초기장력을 도입하여 체결하였다. 상·하부 스플 릿 티 접합부를 구성하는 각 부재의 재료적 물성값은 Table 4 에 정리하였다. 접합부 실험체에 작용하는 하중은 FEMA350 에서 제시한 재하조건을 적용하여 보 단부에 연직방향의 반 복하중 형태로 가하였다. 하중작용에 따른 접합부에 발생하 는 변위는 Fig. 3과 같이 LVDT를 설치하여 측정하였다.

(a) Double split tee connection with a shear tab

(b) Double split tee connection without a shear tabFig. 3. Double split tee connection experimental speciments

Shear tab model	Design shear strength of a shear tab (kN)			
	Bearing fracture	552.96		
90+@	Shear yield	270.72		
	Shear fracture	203.04		
	Block shear	325.44		
	Weld fracture	296.35		
	Bolt fracture	188.4		
	Bearing fracture	725.76		
90+@	Shear yield	389.16		
	Shear fracture	354.24		
70 70 230	Block shear	414.27		
45	Weld fracture	426.01		
	Bolt fracture	282.6		
	Bearing fracture	898.56		
90+@ @ 45 45	Shear yield	507.60		
42	Shear fracture	505.44		
	Block shear	503.10		
45 71	Weld fracture	555.66		
	Bolt fracture	376.8		
	Bearing fracture	1071.36		
90+@ @ 45 45	Shear yield	626.04		
↔ ↔ ↓ 20 45	Shear fracture	656.64		
→	Block shear	591.93		
45 70	Weld fracture	685.31		
	Bolt fracture	471.00		
90+@	Bearing fracture	1244.16		
@ 45 45	Shear yield	774.48		
+ + + + + + + + + + + + + + + + + + +	Shear fracture	807.84		
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔	Block shear	680.76		
+ +	Weld fracture	814.97		
19 4	Bolt fracture	565.20		

 Table 1. A comparison of design shear strength values of the shear tab

Shear tab model	Design she per (k	Number of high strength bolts required	
90+@	F10T M20	94.2	2
	F10T M22	113.98	2
44	F10T M24	135.64	2
90+@	F10T M20	94.2	3
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	F10T M22	113.98	3
45	F10T M24	135.64	3
90+@ @ 45 45 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	F10T M20	94.2	4
	F10T M22	113.98	4
45 70	F10T M24	135.64	3
90+@ @ 45 45	F10T M20	94.2	5
· + + + 70 _ 70 _ 70 _ 45	F10T M22	113.98	5
+ + 45 70 7	F10T M24	135.64	4
90+@ @ 45_45	F10T M20	94.2	6
$\frac{1}{10} + \frac{1}{10} $	F10T M22	113.98	5
+ + + 45 70 70	F10T M24	135.64	5

Table 2. The number of high-strength bolts added to the bottom T-stub flange

Table 3. Geometric variables of T-stub

```
(unit:mm)
```

a _{top}	a _{bot}	b _{top}	b _{bot}	с	b_f	t _w	t _f	g _t	r
45	45	54	54	-	250	16	28	160	18
45	45	54	54	75	250	16	28	160	18
45	45	76.5	76.5	-	300	13	21	210	22
45	45	76.5	76.5	75	300	13	21	210	22
	a _{top} 45 45 45 45	a _{top} a _{bot} 45 45 45 45 45 45 45 45	a _{top} a _{bot} b _{top} 45 45 54 45 45 54 45 45 76.5 45 45 76.5	a _{top} a _{bot} b _{top} b _{bot} 45 45 54 54 45 45 54 54 45 45 54 54 45 45 76.5 76.5 45 45 76.5 76.5	a _{top} a _{bot} b _{top} b _{bot} c 45 45 54 54 - 45 45 54 54 75 45 45 76.5 76.5 - 45 45 76.5 76.5 75	a _{top} a _{bot} b _{top} b _{bot} c b _f 45 45 54 54 - 250 45 45 54 54 75 250 45 45 54 54 75 250 45 45 76.5 76.5 - 300 45 45 76.5 76.5 75 300	a_{top} a_{bot} b_{top} b_{bot} c b_f t_w 45 45 54 54 - 250 16 45 45 54 54 75 250 16 45 45 54 54 54 75 250 16 45 45 76.5 76.5 - 300 13 45 45 76.5 76.5 75 300 13	a_{top} a_{bot} b_{top} b_{bot} c b_f t_w t_f 45 45 54 54 - 250 16 28 45 45 54 54 75 250 16 28 45 45 54 54 75 250 16 28 45 45 76.5 76.5 - 300 13 21 45 45 76.5 76.5 75 300 13 21	a_{top} a_{bot} b_{top} b_{bot} c b_f t_w t_f g_t 45455454-250162816045455454752501628160454576.576.5-3001321210454576.576.5753001321210

G160-T28-B250-SI

with a shear tab, no extra bolts(SI)
without a shear tab, with extra
bolts(SO)
Width of a T-stub
Thickness of a T-stub
Bolts gauge distance of a T-stub

Table 4. Material properties of each mememberused

	F_y	F_u	E	ç	0	
	(N/mm^2)	(N/mm ²)	(N/mm^2)	c_y	c_u	
Beam	360.657	548.294	196,999	0.001830	0.16734	
Column	361.235	549.578	179,571	0.002011	0.16897	
T-stub	338.541	496.281	217,697	0.001555	0.16979	
Shear tab	346.861	500.254	219,730	0.001578	0.17003	
Stiffner	323.994	492.465	215,960	0.001500	0.16428	
Doubler plate	397.951	515.036	216,010	0.001842	0.16772	
Continuety plate	367.039	500.762	219,992	0.001668	0.16787	

2.3 접합부의 설계휨강도 및 모멘트-회전각 관계 이력 곡선

Fig. 4(a)에 나타난 것과 같이 G160-T28-B250-SI 실 험체 A, B는 하중이 증가하여도 T-stub 플랜지에는 휨항복 에 의한 소성변형이 발생하지 않았다. 최종적으로 G160-T28-B250-SI 실험체 A, B는 각각 824.14kN·m, 886.13 kN·m의 휨모멘트가 작용할 때 T-stub 스템에 체결된 고장 력볼트의 전단파단에 의하여 파괴되었다. 마찬가지로 Fig. 4(b)에 나타난 것과 같이 G160-T28-B250-SO 실험체 A, B도 G160-T28-B250-SI 실험체와 같이 하중이 증가하여 도 T-stub 플랜지에는 휨항복에 의한 소성변형이 발생하지 않았다. 최종적으로 G160-T28-B250-SO 실험체 A, B는

각각 748.88kN·m, 793.19kN·m의 휨모멘트가 작용할 때 하부 T-stub 스템에 체결된 고장력볼트의 전단파단에 의하 여 파괴되었다. Fig. 4(b)에 나타난 것과 같이 전단탭이 없는 G160-T28-B250-SO 실험체 A, B의 하부 T-stub 플랜 지에 체결된 고장력볼트의 전단파단은 발생하지 않았다. 또 한, 하부 T-stub 필릿부의 전단파단도 발생하지 않았다. 두 실험체 모두 하부 T-stub 스템에 체결된 고장력볼트의 전단 파단에 의하여 파괴된 이유는 각 실험체의 T-stub 플랜지의 두께가 상대적으로 두껍고 T-stub 플랜지에 체결된 고장력 볼트의 게이지 거리도 짧기 때문으로 판단된다.

Fig. 4(c)에 나타난 것과 같이 G210-T21-B300-SI 실 험체 A. B는 하중이 증가함에 따라서 T-stub 플랜지에는 휨 항복에 의한 변형이 발생하였다. 최종적으로 G210-T21-B300-SI 실험체 A, B는 각각 1,104.55kN·m, 822.56kN· m의 휨모멘트가 작용할 때 T-stub 플랜지에 체결된 고장력 볼트의 인장파단에 의하여 파괴되었다. 마찬가지로 Fig. 4(d)에 나타난 것과 같이 G210-T21-B300-SO 실험체 A, B도 G210-T21-B300-SI 실험체 A. B와 같이 하중이 증 가함에 따라서 T-stub 플랜지에는 휨항복에 의한 변형이 발 생하였다. 최종적으로 G210-T21-B300-SO 실험체 A, B 는 각각 1,143.77kN·m, 1,088.91kN·m의 휨모멘트가 작용 할 때 T-stub 플랜지에 체결된 고장력볼트의 인장파단에 의하 여 파괴되었다. Fig. 4(d)에 나타난 것과 같이 전단탭이 없는 G210-T21-B300-SO 실험체 A, B의 하부 T-stub 플랜지 에 체결된 고장력볼트의 전단파단은 발생하지 않았다. 또한, 하부 T-stub 필릿부의 전단파단도 발생하지 않았다. 두 실 험체 모두 하부 T-stub 플랜지에 체결된 고장력볼트의 인장 파단에 의하여 파괴된 이유는 G160-T28-B250-SO 실험 체보다 G210-T21-B300-SO 실험체의 T-stub 플랜지의 두께가 상대적으로 얇아지고 T-stub 플랜지에 체결된 고장 력볼트의 게이지 거리도 길어진 것 때문으로 판단된다. 이러 한 파괴양상은 일반적으로 축방향 인장력을 받는 T–stub 접 합부의 파괴양상과 유사한 거동특성을 나타내고 있다.

Table 5에 나타난 것과 같이 T-stub 플랜지의 두께가 두 껍고 고장력볼트 게이지 거리가 짧은 G160-T28-B250 실 험체의 파괴하중이 G210-T21-B300 실험체보다 높았다. 또한, 전단탭이 있는 G160-T28-B250-SI 실험체와 G210-T21-B300-SI 실험체의 파괴하중은 전단탭이 없는 G160-T28-B250-SO 실험체와 G210-T21-B300-SO 실험체의 파괴하중 보다는 높았으나 파괴강도 차이는 크지 않았다. 일반적으로 접합부의 에너지소산능력은 모멘트-회전각 관계 이력곡선의 내부면적의 총합으로 나타낼 수 있다. Fig. 5와 Table 6에 나타난 것과 같이 T-stub 플랜지의 휨항복 후 소성변형 발생이 큰 G210-T21-B300 실험체가 T-stub 플랜지의 휨항복이 발생하지 않은 G160-T28-B250 실험체 보다 더 큰 에너지소산능력을 발현하고 있다. 또한, 전단탭 이 없는 G160-T28-B250-SO 실험체와 G210-T21-B300-SO 실험체의 에너지소산능력이 전단탭이 없는 G160-T28-B250-SI 실험체 실험체와 G210-T21-B300-SI 실험체의 에너지소산능력 보다 평균적으로 높았다.

Table 5. Flexural strength of double split tee connections $(unit: kN \cdot m)$

Experimental test specimen	$M_{fail,1}$	$M_{fail,2}$	$M_{fail,3}$	$M_{fail,4}$	$M_{fail,5}$	Fracture moment by Exp. test
G160-T28- B250-SI(a)	704.5	1,713.0	541.7	489.4	2,041.6	1,104.5
G160-T28- B250-SI(b)	704.5	1,713.0	541.7	489.4	2,041.6	866.7
G160-T28- B250-SO(a)	-	1,713.0	541.7	489.4	2,041.6	1,088.9
G160-T28- B250-SO(b)	-	1,713.0	541.7	489.4	2,041.6	1,143.7
G210-T21- B300-SI(a)	702.2	1,380.6	213.5	339.4	2,035.0	829.9
G210-T21- B300-SI(b)	702.2	1,380.6	213.5	339.4	2,035.0	893.9
G210-T21- B300-SO(a)	-	1,380.6	213.5	339.4	2,035.0	954.6
G210-T21- B300-SO(b)	-	1,380.6	213.5	339.4	2,035.0	961.7

 Table 6. A comparison of energy dissipation capacity values of each experimental test specimen

Experimental test specimen	E_d (kN·m)
G160-T28-B250-SI-A	155.76
G160-T28-B250-SI-B	118.11
G160-T28-B250-SO-A	114.22
G160-T28-B250-SO-B	210.37
G210-T21-B300-SI-A	154.99
G210-T21-B300-SI-B	220.85
G210-T21-B300-SO-A	340.18
G210-T21-B300-SO-B	269.91

(a) G160-T28-B250-SI specimen A,B

(b) G160-T28-B250-SO specimen A,B

(c) G210-T21-B300-SI specimen A,B

(d) G210-T21-B300-SO specimen A,B Fig. 4. Failure modes of double split tee connection specimens

전단탭이 없는 상·하부 스플릿 티 접합부에 대한 접합부 상세

3.1 설계휨강도 및 에너지소산능력 평가

Fig. 5에 나타난 것과 같이 상·하부 스플릿 티 접합부의 설계휨강도는 T-stub 플랜지의 두께가 증가하고 고장력볼 트 게이지 거리가 감소 될수록 증가됨을 알 수 있다. Table 5에 정리한 것과 같이 상·하부 스플릿 티 접합부 실험체의 파괴하중 값은 상·하부 스플릿 티 접합부의 설계휨강도 값 보다 크다. 또한, 접합부 파괴시의 각 실험체의 회전각은 약 0.035rad. 정도이다. 따라서 전단탭이 없는 상·하부 스플릿 티 접합부는 충분한 강도 및 강성을 갖고 있다고 판단한다.

상·하부 스플릿 티 접합부 실험을 통하여 얻은 모멘트-회전각 관계 이력곡선의 내부면적에 해당하는 에너지소산 능력은 Table 6에 정리하였다. 이를 활용하여 상·하부 스플 릿 티 접합부의 에너지소산능력과 각 접합부의 T-stub 플 랜지 두께와 고장력볼트 게이지 거리와의 상관관계를 아래 의 무차원화 된 식 (19)와(20)으로 정리하였다. 상·하부 스 플릿 티 접합부의 에너지소산능력은 T-stub 플랜지의 두께 가 증가하고 고장력볼트 게이지 거리가 감소 될수록 감소됨 을 알 수 있다.

$$(E_{D,SI})_{Yang} = (19)$$

5,916.525 $(g_t/t_{flq.}) + 136,941.2$

$$\begin{array}{l} (E_{D,\,SO})_{Yang} = \\ 27,328.28(g_t/t_{flq.}) + 187,921.9 \end{array} \tag{20}$$

(c) G210-T21-B300-SI specimen A, B

(d) G210-T21-B300-SO specimen A, B

3.2 접합부상세 제안

상·하부 스플릿 티 접합부가 작은 춤의 보 부재로 구성된 중·저층의 강구조물에 적용되는 경우에는 기하학적 형상에 의하여 전단탭을 적용하지 못하는 상황이 발생한다. 그러므 로 전단탭이 지지하는 전단력을 지탱하기 위한 접합부 상세 의 제안이 필요하다. 따라서 이 연구에서는 하부 T-stub에 체결되는 고장력볼트의 개수 혹은 직경을 증가시켜 추가된 고장력볼트가 전단탭의 역할을 대신하여 전단력을 지탱하도 록 하는 접합부상세를 제안한다.

전단탭이 없는 상·하부 스플릿 티 접합부의 하부 T-stub 플랜지에 추가 체결되는 고장력볼트의 개수는 Table 1에 정 리한 전단탭의 한계상태 중 가장 작은 값을 선택하여 Table 7에 정리한 F10T-M20, F10T-M22 등의 고장력볼트 한 개 가 지탱할 수 있는 전단강도 값으로 나누어 Table 8과 9와 같 이 결정하였다. Table 8과 Table 9, Fig. 6은 하부 T-stub 플 랜지에 추가 체결되는 고장력볼트의 개수를 고려한 접합부 상세를 나타낸다.

(a) The detail of Double split tee connection without a shear tab

(b) The detail of the bottom T-stub connection

Table 7. Design shear streng	gth values per high-strength bolt
------------------------------	-----------------------------------

High strength bolt	Shear strength
	(kN•m)
F10T M20	94.2
F10T M22	113.98
F13T M20	122.46
F13T M22	148.17

Table 8.	The number o	f high-strength	bolts	added	to	the
	bottom T-stub	flange				

Shear tab model	Design she of high str (k)	Number of high strength bolt	
90+@ @ 45 45	F10T M20	94.2	2
	F10T M22	113.98	2
	F13T M20	122.46	2
90+@	F10T M20	94.2	3
	F10T M22	113.98	3
0 70 J	F13T M20	122.46	3
45 70	F13T M22	148.17	2
90+ $\textcircled{@}$ @ @ @ 0 $\rule{0}$ $\rule{0} \\0$ $\rule{0} 0$ $\rule{0} \\0$ $\rule{0} 0$ $\rule{0} 0$ \rule	F10T M20	94.2	4
	F10T M22	113.98	4
	F13T M20	122.46	4
	F13T M22	148.17	3
90+@ @45_45	F10T M20	94.2	5
70 45	F10T M22	113.98	5
↔ ↔ ↔	F13T M20	122.46	4
45 70	F13T M22	148.17	4
90+@ @ 45 45	F10T M20	94.2	6
	F10T M22	113.98	5
	F13T M20	122.46	5
	F13T M22	148.17	4

Table 9. The details of the shear reinforced bottom T-flange with the array of bolts

4. 결 론

이 연구는 보 웨브에 전단탭 설치가 어려운 기하학적 형 상을 갖는 상·하부 스플릿 티 접합부가 충분한 강도, 강성, 에너지소산능력 등을 발현하도록 하는 접합부상세를 제안 하기 위하여 진행하였다. 이 연구를 통하여 다음과 같은 결 론을 얻었다.

- (1) 전단탭이 있는 상·하부 스플릿 티 접합부와 전단탭이 없 는 상·하부 스플릿 티 접합부는 T-stub 플랜지의 두께 가 증가될수록 고장력볼트 게이지 거리가 감소될수록 설 계휨강도 값이 증가하였다.
- (2) 전단탭이 있는 상·하부 스플릿 티 접합부와 전단탭이 없는 상·하부 스플릿 티 접합부는 T-stub 플랜지의 두 께가 증가될수록 고장력볼트 게이지 거리가 감소될수록 회전각 변화 및 에너지소산능력 값은 감소되었다.
- (3) 전단탭이 없는 상·하부 스플릿 티 접합부의 설계휨강도 값은 전단탭이 있는 상·하부 스플릿 티 접합부의 설계 휨강도 값과 큰 차이는 없었고 하부 T-stub 플랜지에 체결된 고장력볼트의 전단파단 및 하부 T-stub 필릿부 의 전단파단도 발생하지 않았다.
- (4) 제안한 전단탭이 없는 상·하부 스플릿 티 접합부에 대 한 접합부 상세를 적용하여도 충분한 강도, 강성, 에너 지소산능력을 발현하였다. 따라서 제안한 전단탭이 없 는 상·하부 스플릿 티 접합부에 대한 접합부 상세는 적 용하기 적합하다고 판단한다.

감사의 글

이 연구는 한국연구재단의 지원(과제번호: NRF-2013-R1A1A2008363)에 의하여 수행된 과제의 일부입니다. 이에 논문의 저자들은 깊은 감사의 말씀을 전합니다.

참고문헌(References)

- [1] 김희동, 양재근, 이재윤, 이형동(2014) 상·하부 T-Stub 접 합부의 초기회전강성 평가, 한국강구조학회논문집, 한국 강구조학회, 제26권, 제2호, pp.133-142.
 Kim, H.D., Yang, J.G., Lee, J.Y., and Lee, H.D. (2014) Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection, *Journal of Korean Society of Steel Construction*, KSSC, Vol.26, No.2, pp.133-142 (in Korean).
- [2] 양재근, 김주우, 김윤(2012) 상·하부 스플릿 T 접합부의 휨 강도 설계식, 한국강구조학회논문집, 한국강구조학회, 제

24권, 제5호, pp.511-520.

Yang, J.G., Kim, J.W., and Kim, Y. (2012) Design Formula for the Flexural Strength of a Double Split Tee Connection, *Journal of Korean Society of Steel Construction*, KSSC, Vol.24, No.5, pp.511-520 (in Korean).

- [3] 양재근, 김윤, 박재호(2012) 상·하부 스플릿 T 접합부의 초기회전강성 예측모델, 한국강구조학회논문집, 한국강 구조학회, 제24권, 제3호, pp.279-287.
 Yang, J.G., Kim, Y., and Park, J.H. (2012) Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection, *Journal of Korean Society of Steel Construction*, KSSC, Vol.24, No.3, pp.279-287 (in Korean).
- [4] Faella, C., Piluso, V., and Rizzano, G. (2000) Structural Steel Semirigid Connections: Theory, Design and Software, CRC Press, UK.
- [5] Kulak, G.L., Fisher, J.W., and Struik, J.H.A. (2001) Guide to Design Criteria for Bolted and Riveted Joints (2nd Ed.), American Institute of Steel Construction, USA.
- [6] Yang, J.-G., Park, J.-H., Choi, J.-H., and Kim, S.-M. (2011) Characteristic Behavior of a T-Stub Connection Under Shear, Including the Effects of Prying Action and Bolt Pretension, *Proceedings of 6th International Symposium* on Steel Structures, KSSC, Korea, pp.1086-1092.
- [7] Yang, J.-G., Kim, H.-K., Park, J.-H., Baek, M.-C. (2013) Analytical Models for the Initial Axial Tensile Stiffness and Ultimate Tensile Load of a T-Stub, Including the Effects of Prying Action, *International Journal of Steel Structures*, KSSC, Vol.13, No.2, pp.341-352.
- [8] SAC Joint Venture (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings (FEMA-350), Federal Emergency Management Agency, USA.
- [9] Astaneh-Asl, A. (1985) Procedure For a Design and Analysis of Hanger-Type Connections, *Engineering Journal*, American Institute of Steel Construction, Vol.22, No. 2, pp.63-66.
- [10] Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-Stubs, I: Theoretical Model, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.127, No.6, pp.686-693.
- [11] Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-Stubs, II: Model Validation, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.127, No.6, pp.694-704.
- [12] Swanson, J.A. (2002) Ultimate Strength Prying Models for Bolted T-Stub Connections, *Engineering Journal*, American Society of Civil Engineers, Vol.39, No.3, pp.

136-147.

- [13] Swanson, J.A., Kokan, D.S., and Leon, R.T. (2002) Advanced Finite Element Modeling of Bolted T-Stub Connection Components, *Journal of Constructional Steel Research*, Elsevier, Vol.58, pp.1015-1031.
- [14] Thornton, W.A. (1985) Prying Action: A General Treatment, *Engineering Journal*, American Institute of Steel Construction, Vol.22, No.2, pp.67-75.
- [15] Coelho, A.M.G., da Silva, L.S., and Bijlaard, F.S.K. (2004) Characterization of the Nonlinear Behaviour of Single Bolted T-Stub Connections, *Connections in Steel Structures V (Proceedings of the 5th International Workshop on Connections)*, American Institute of Steel Construction & European Convention for Constructional Steel, Netherlands, pp.53-64.
- [16] Coelho, A.M.G, da Silva, L.S., and Bijlaard, F.S.K. (2006) Finite-Element Modeling of the Nonlinear Behavior of Bolted T-Stub Connections, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.132, No. 6, pp.918-928.
- [17] Lemonis, M.E., and Gantes, C.J. (2006) Incremental Modeling of T-Stub Connections, *Journal of Mechanics of Materials and Structures*, Mathematical Sciences Publishers, Vol.1, No.7, pp.1135-1159.
- [18] Stankiewicz, B. (2002) Experimental Tests of T-Stub Joints and Refined Finite Element Method Computer Model, *Proceedings of EUROSTEEL 2002: The 3rd European Conference on Steel Structures (Vol. 2)*, European Convention for Constructional Steel, Portugal, pp.927-936.
- [19] 양재근, 이형동, 김용범, 배다솔(2015) 전단탭이 없는 상· 하부 스플릿 티 접합부의 접합부상세 제안, 한국강구조학 회논문집, 한국강구조학회, 제27권, 제5호, pp.423-433. Yang, J.G., Lee, H.D., Kim, Y.B., and Pae, D.S. (2015) Proposal of Connection Details for a Double Split Tee Connection Without a Shear Tap, *Journal of Korean Society of Steel Construction*, KSSC, Vol.27, No.5, pp.423-433 (in Korean).
- [20] 양재근, 최정환, 김현광, 박재호(2011) 무보강 상 하부 형강 접합부의 소성휨모멘트 저항능력 예측을 위한 실험 및 해석적 연구, 한국강구조학회논문집, 한국강구조학회, 제23권, 제5호, pp.547-555. Yang, J.G., Choi, J.H., Kim, H.K., and Park, J.H. (2011)

Experimental Tests and Analytical Study for the Prediction of the Plastic Moment Capacity of an Unstiffened Top and Seat Angle Connection, *Journal of Korean So*- *ciety of Steel Construction*, KSSC, Vol.23, No.5, pp.547-555 (in Korean).

[21] 오경현, 서성연, 김성용, 양영성, 김규석(2005) 전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성 능에 관한 실험적 연구, 한국강구조학회논문집, 한국강구 조학회, 제17권, 제5호, pp.569-580.
Oh, K.H., Seo, S.Y., Kim, S.Y., Yang, Y.S., and Kim, K.S. (2005) An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections, *Journal of Korean Society of Steel Construction*, KSSC, Vol.17, No.5, pp.569-580 (in Kore-

기 호(Notation)

- A_b : 고장력볼트의 공칭단면적 (mm^2)
- A_{qv} : 전단면의 총 단면적(mm²)

an).

- A_{nv} : 전단면의 순단면적 (mm^2)
- A_{nt} : 인장면의 순단면적 (mm^2)
- a : 고장력볼트 중심과 T-stub 플랜지 끝 단의 거리(mm)
- b : 고장력볼트 볼트구멍 끝단과 T-stub 스템면의 거리 (mm)
- b_f : T-stub 플랜지 폭(mm)
- b_T : T-stub 플랜지 분절의 길이(mm)
- *d*,*d*_{beam} : 보의 춤(mm)
- *d_b* : 고장력볼트의 직경(mm)

- *d_c* : 기둥의 폭(mm)
- *E* : 강재의 탄성계수(N/mm²)
- *E*_h : 강재의 할선계수(N/mm²)
- *F_u* : 강재의 인장강도(N/mm²)
- F_{uT} : 고장력볼트의 공칭인장강도(N/mm²)
- F_{u} : 강재의 항복강도(N/mm²)
- F_{yT} : 고장력볼트의 공칭항복강도(N/mm²)
- F_{nv} : 고장력볼트의 전단강도(N/mm²)
- g_t : T-stub의 고장력볼트 게이지 거리(mm)
- g_t' : 볼트구멍을 제외한 T-stub의 고장력볼트 게이지 거리 (mm)
- n_{tb} : 인장볼트의 총 개수
- L_c : 최단 고장력볼트의 순 거리(mm)
- p : 고장력볼트의 피치(mm)
- r : 필릿 반경(mm)
- S₁ : 기둥 외면으로부터 T−stub 스템 첫 번째 고장력볼트 중심간 거리(mm)
- S₂ : T-stub 스템 고장력볼트 사이 거리(mm)
- S₃ : T-stub 스템 양끝단 고장력볼트 사이 거리(mm)
- t : 부재의 두께(mm)
- t_{wc} : 기둥 웨브의 두께(mm)
- $t_f, t_{fT,fl}$: T-stub 플랜지의 두께(mm)
- t_s,t_{T,stem} : T-stub 스템의 두께(mm)
- ϵ_u : 강재의 인장 변형률
- ϵ_u : 강재의 항복 변형률

요 약: 상·하부 스플릿 티 접합부는 보-기둥 모멘트 접합부의 한 형태로 T-stub 플랜지의 두께, 고장력볼트의 게이지 거리, 고장력볼트의 개수, 고장력볼트의 직경 등의 변화에 따라서 상이한 거동특성을 나타낸다. 상·하부 스플릿 티 접합부는 일반적으로 상·하부에 체결된 T-stub이 휨모멘트를 지지하고 전단탭이 전단력을 지지하는 것으로 이상화하여 설계되고 있다. 그러나 중·저층 강구조물에 상·하부 스플릿 티 접합부가 적용되면 보 부재의 규격이 작아지므로 보 웨브에 전단탭을 설치할 수 없는 경우가 발생할 수 있다. 이 연구는 이와 같이 보 웨브에 전단탭 설치가 어려운 기하학적 형상을 갖는 상·하부 스플릿 티 접합부가 충분한 전단력 지지능력을 발현하도록 하는 접합부상세를 제안하기 위하여 진행하였다. 이를 위하여 상·하부 스플릿 티 접합부에 대한 실험체를 제작하여 실물대 실험을 수행하였다.

핵심용어 : 상·하부 스플릿 티 접합부, 전단탭, 전단지지능력, 접합부 상세