Vol.27, No.5, pp.423-433, October, 2015

전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안

양재근^{1*} · 이형동² · 김용범³ · 배다솔³

¹교수, 인하대학교, 건축공학과, ²공학석사, 인하대학교, 건축공학과, ³석사과정, 인하대학교, 건축공학과,

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap

Yang, Jae Guen^{1*}, Lee, Hyung Dong², Kim, Yong Boem³, Pae, Da Sol³

¹Professor, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea ²Master of Science, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea ³Graduate Student, Department of Architectural Engineering, Inha University, Incheon, 402-751, Korea

Abstract - A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

Keywords - Double split tee connection, Shear resisting capacity, Shear tab, Connection detail

1. 서 론

상·하부 스플릿 티 접합부는 보-기둥 모멘트 접합부의 한 형태로 접합부에 전달되는 휨모멘트는 T-stub이 지지하고 전단력은 전단탭이 지지하는 것으로 이상화하여 설계 및 시 공되고 있다^{[11,[2],[3],[4],[5],[6],[7]}. 이러한 상·하부 스플릿 티 접 합부가 중·저층 강구조물에 적용될 경우, 작은 규격의 보 부 재가 적용되어 부득이 전단탭이 보 웨브에 설치되지 못하는 상황이 발생할 수 있다. 이 경우에 상·하부 스플릿 티 접합부 의 전단탭이 부담하는 전단력을 지지할 수 있는 접합부상세

Copyright © 2015 by Korean Society of Steel Construction *Corresponding author.

Tel. +82-32-860-7588 Fax. +82-32-866-4624 E-mail. jyang@inha.ac.kr 의 제안이 필요한 상황이다. 이를 위해서는 상·하부 스플릿 티 접합부의 전단탭에 대한 한계상태 즉, 전단탭의 전단항 복, 전단탭의 전단파단, 전단탭의 블록전단, 전단탭-기둥 플랜지 용접부 파단, 전단탭에 체결된 고장력볼트의 전단파 단 등에 대한 한계상태의 검토가 우선적으로 선행되어야 한 다. 그러므로 이 연구는 전단탭의 역할을 대체할 수 있는 상· 하부 스플릿 티 접합부에 대한 접합부상세를 제안하고, 제안 된 접합부가 충분한 강성, 강도, 에너지소산능력을 발현하는 것을 확인하기 위하여 진행하였다. 이를 위하여 상·하부 스 플릿 티 접합부의 거동에 영향을 미치는 변수 중에서 T-stub 플랜지의 두께를 변수로 선택하고, 전단탭이 있는 상·하부 스플릿 티 접합부와 전단탭이 없는 새로이 제안한 접합부상 세의 상·하부 스플릿 티 접합부의 거동특성을 파악하였다.

Note.-Discussion open until April 30, 2016. This manuscript for this paper was submitted for review and possible publication on June 4, 2015; revised September 17, 2015; approved on September 19, 2015.

2. 상·하부 스플릿 티 접합부의 유한요소해석

2.1 상·하부 스플릿 티 접합부 해석모델 선택

상·하부 스플릿 티 접합부에 대한 해석모델은 Fig. 1과 같 은 전단탭이 있는 기존의 접합부와 이 연구에서 제안하는 전 단탭이 없는 접합부에 대하여 진행하였다. 새로이 제안하는 접합부상세는 전단탭이 부담하는 전단력 산정이 우선적으로 수행되어야 한다. 이를 위하여 전단탭에 대한 한계상태를 다 음과 같은 Eq'ns (1)~(4)를 적용하여 검토하였다. Table 1 과 같이 전단탭의 설계전단강도를 산정하였다. Table 1에 나 타난 것과 같이 전단탭의 전단파단 강도가 설계강도를 좌우 하므로 이를 하부 T-stub에 체결된 추가된 고장력볼트가 부 담하는 것으로 하였다. 즉, Fig. 2에 나타난 것과 같이 하부 T-stub에 전단력을 지탱하는 고장력볼트 열을 1열 추가한 접합부 상세를 제시하였다. Table 2에 정리한 것과 같이 하 부 T-stub에 체결되는 고장력볼트의 개수는 1면전단, 고장 력볼트의 나사부가 전단면에 포함된 것으로 가정하여 아래 Eq'n (5)을 적용하여 산정한다. Table 3은 새로이 제안한 접 합부상세를 갖는 상·하부 스플릿 티 접합부에 대한 기하학 적 형상 변수를 정리한 것이다.

전단탭에 체결된 고장력볼트의 지압: $\phi R_n = \phi (1.2L_c tF_u \le 2.4 dt F_u), \phi = 0.75$ (1)

전단탭의 전단항복: $\phi R_n = \phi(0.6F_v A_{w}), \phi = 1.0$ (2)

전단탭의 전단파단: $\phi R_n = \phi(0.6F_u A_{nv}), \phi = 0.75$

전단탭의 블록전단:

$$\phi R_n = \phi (0.6F_n A_{nv} + U_{hs}F_n A_{nt}), \phi = 0.75$$
 (4)

(3)

$$\phi R_n = \phi \Big(\begin{array}{c} 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \\ \leq 0.6F_u A_{gv} + U_{bs} F_u A_{nt} \end{array} \Big), \phi = 0.75$$

하부 T-stub에 체결된 고장력볼트의 전단파단:

$$\phi R_n = \phi F_{nv} A_b, \phi = 0.75$$
 (5)

상·하부 스플릿 티 접합부에 대한 설계휨강도는 다음과 같은 Eq'ns (6)~(17)을 적용하여 검토하였다. Table 4에 나타난 것과 같이 T-stub 플랜지의 휨항복 시의 *M_{fail}* 값이 설계강도를 좌우함을 알 수 있다^[8]. 상·하부 스플릿 티 접합 부에 대한 휨강도 검토에 있어서 기둥의 패널존의 전단항복 및 기둥 플랜지의 국부좌굴이 발생하지 않도록 패널존에 연 속 플레이트와 기둥 플랜지는 충분히 두꺼운 기둥부재를 선

Fig. 2. Double split tee connection without a shear tap

Table 1. Design shear strength of a shear tap

Analytical model	Bearing fracture (kN)	Shear yield (kN)	Shear fracture (kN)	Block shear (kN)
G110-SI	282.24	253.8	181.5	255.7

Table 2. Number of added high-strength bolt of bottom T-stub

	Number of	Number of
Analytical model	high-strength bolt	necessary
	in shear tap	high-strength bolt
	2	2
G110-T11	3	4
	4	4
	2	2
G110-T15	3	4
	4	4
	2	2
G110-T19	3	4
	4	4

Analytical model	a _{top}	a _{bot}	b _{top}	b _{bot}	с	b_f	t _w	t _f	g _t	r
G110-T11-SI	45	45	51.5	51.5	-	200	7	11	110	16
G110-T11-SX	45	45	51.5	51.5	75	200	7	11	110	16
G110-T15-SI	45	45	51.5	51.5	-	200	10	15	110	24
G110-T15-SX	45	45	51.5	51.5	75	200	10	15	110	24
G110-T19-SI	45	45	51.5	51.5	-	200	11	19	110	20
G110-T19-SX	45	45	51.5	51.5	75	200	11	19	110	20

Table 3. Geometric variable of T-stub

택하여 모델링 하였다. Fig. 3은 상·하부 스플릿 티 접합부 의 설계휨강도 산정시에 적용된 접합부의 기하학적 형상변 수를 나타낸다^{[9],[10],[11],[12],[13],[14]}.

보 플랜지에 체결된 고장력볼트의 전단파단:

$$M_{fail,1} = 2NA_b(F_{v,bolt})d \cdot L_{TF1}$$
(6)

여기서,

$$L_{TF1} = \frac{L - d_c}{L - d_c - (2S_1 + S_3)} \tag{7}$$

T-stub 스템의 순단면 파단:

$$M_{fail,2} = F_{ut}w - 2(d_{bt} + 2)t_{stem} \bullet (d + t_{stem}) \bullet L_{TF2}$$
(8)

여기서,

$$w = \min \left| \begin{array}{c} the \ flange \ length \ of \ the \ T \\ the \ width \ of \ the \ T \\ at \ he \ first \ of \ bolts \end{array} \right|$$
(9)

$$w \le g_t + S_3 \tan \theta_{eff} \tag{10}$$

$$15^{\circ} \leq \theta_{eff} = 60t_{stem} \leq 30^{\circ}$$

$$L_{TF2} = \frac{L - d_c}{L - d_c - 2S_1}$$
(11)

T-stub 플랜지의 휨항복:

$$M_{fail,3} = \frac{(2a' - \frac{a_{bt}}{4})wF_{yT}t_f^2(d - t_{stem})}{4a'b' - d_{bt}(b' + a')}$$
(12)

여기서,

$$a' = a - \frac{d_b}{2} \tag{13}$$

$$b' = b - \frac{d_b}{2} \tag{14}$$

T-stub 플랜지에 체결된 고장력볼트의 인장파단:

$$M_{fail,4} = N_{tb}(d + t_{stem}) \bullet (T_{ub} + \frac{w F_{yT} t_f^2}{16a'}) \bullet \frac{a'}{a' + b'} (15)$$

보 플랜지의 순단면 파단:

$$M_{fail,5} = [F_{u,bm}Z_b - 2(d_{bt,hole} + 2t_{fb}(d - t_{fb})] \bullet L_{TF3}$$
(16)

Geometry for Other T-Stub Failure Modes

(a) Geometry for T-stub failure modes

(b) Geometry for prying forces and bending of T-section flanges

Fig. 3. Geometry variables in T-stub failure modes

Table 4. Fiexural strength of double split tee connections

Analytical model	$M_{fail,1}$ (kN·m)	$M_{fail,2}$ (kN·m)	$M_{fail,3}$ (kN·m)	M _{fail,4} (kN⋅m)	$M_{fail,5}$ (kN·m)
G110-T11	416.8	377.92	72.35	206.7	511.46
G110-T15	418.37	546.43	139.44	224.15	513.42
G110-T19	418.37	602.74	226.52	240.74	513.42

여기서,

$$L_{TF3} = \frac{L - d_c}{L - d_c - 2(S_1 + S_3)} \tag{17}$$

2.2 상·하부 스플릿 티 접합부 유한요소해석 모델링

상·하부 스플릿 티 접합부 해석모델^{[1],[15],[16],[17],[18]}은 상 용프로그램인 ABAQUS (ver. 6, 14) 부재요소 중 C3D8R (Eight-node liner brick, reduced integration, hourglass control)를 활용하여 Fig. 4와 같이 모델링하였다. 상·하부 스플릿 티 접합부 해석모델은 H-300×300×10×15 규격의 기둥부재, H-350×175×7×11 규격의 보 부재, T-stub 부 재는 SM490 강재 적용하였고 그 외 판재의 경우 SS400 강 재로 구성된 것으로 하였다. 유한요소해석에 있어서 각 부재 의 재료적 물성값은 Table 5와 Table 6, Table 7에 정리한 것과 같이 T-stub과 보 및 기둥, 고장력볼트의 재료적 물성 값은 공칭강도 값을 적용하였다. F10T-M20 고장력볼트는 165kN의 축력이 발현되도록 체결하였다. 접합부 모델링에 있어서 각 부재 사이에 접촉 및 지압 현상, 고장력볼트의 초 기장력 도입 등도 고려하였다. 각 부재 사이의 미끄럼계수는 블라스트 후 도장하지 않은 표면을 가정하여 0.3으로 선택 하였다. 해석모델의 기하학적 변수는 Table 3과 같이 T-stub의 게이지 거리 별로 전단탭이 있는 SI 모델과 전단 탭이 없는 SX모델을 적용하였고, 반복하중은 보 단부에 연 직방향의 전단력 형태로 FEMA350에서 제시한 구조체 접합 부 시험의 재하조건을 작용하는 것으로 하였다. 유한요소해 석에 있어서 적용한 ABAQUS 옵션은 Table 8 정리하였다. 상·하부 스플릿 티 접합부 해석모델은 약 74,300개의 절점 과 54,400개의 부재요소로 구성되었다.

(a) G110-T11-SI analytical (a) G110-T11-SX analytical model model

Fig. 4. Double split tee connection analytical models

Table 5. Material properties of beam and column

F_y	F_u	E	ę	E	
(N/mm^2)	(N/mm^2)	(N/mm^2)	c_y	c_u	
325	490	205,000	0.001585	0.08158	

 Table 6. Material properties of shear tap, stiffner doubler plate

 and continuity plate

F_y	F_u	E	ę	ę
(N/mm^2)	(N/mm^2)	(N/mm^2)	c_y	c_u
235	400	205,000	0.001146	

Table 7. Material properties of high-strength bolt

F_y (N/mm ²)	F_u (N/mm ²)	E (N/mm ²)	\mathcal{E}_{y}	\mathcal{E}_{u}
900	1000	205,000	0.003886	0.08388

Table 8. ABAQUS options for the finite element analysis

Contact surface	Command		Option	
T-stub - Column				adjust
T-stub - Beam		~ .	allow	only
T-stub - Bolt	contact	finite	separation after	to remove
Beam - Bolt		Sinding	contact	over
Column - Bolt				closure
Column - Doubler plate				
Column - Continuity plate		tie		
Column - Shear tap	mpc			
Beam - Stiffener				

상·하부 스플릿 티 접합부의 유한요소해석 해석결과

3.1 상·하부 스플릿 티 접합부의 응력분포

Fig. 5에 나타난 것과 같이 각 접합부에 작용하는 하중이 증가함에 따라서 T-stub 플랜지와 기둥 플랜지에 체결된 고 장력볼트가 만나는 부분 및 T-stub 필릿부에 응력이 집중되 기 시작한다. 하중이 휨모멘트-회전각 관계 이력곡선의 참 조모멘트 영역을 지나서 작용하면 이 두 부분의 응력집중현 상은 더욱 심화된다. 이때 기둥 플랜지에 체결된 고장력볼트 의 축부에도 응력집중현상이 심화된다. 일반적으로 T-stub 플랜지에 축방향 인장력이 작용할 때와 마찬가지로 T-stub 플랜지가 비교적 얇은 접합부는 이와 같은 응력집중현상에

(b) G110-T11-SX analytical model

Fig. 5. Stress contours of double split tee connections (continued)

Fig. 5. Stress contours of double split tee connections (continued)

(f) G110-T19-SX analytical model

Fig. 5. Stress contours of double split tee connections

의하여 T-stub 플랜지의 휨항복 후 소성변형의 영향으로 파 괴가 발생할 가능성이 높아진다. 반면에, T-stub 플랜지가 상대적으로 두꺼운 접합부는 T-stub 플랜지의 휨항복 후 소 성변형의 영향보다는 기둥 플랜지에 체결된 고장력볼트의 인장파단 혹은 보 플랜지에 체결된 고장력볼트의 전단파단 에 의하여 파괴가 발생할 가능성이 높아진다. 하부 T-stub 플랜지에 체결된 고장력볼트의 전단응력을 검토한 결과, 고 장력볼트의 전단응력을 초과하지 않았기 때문에 고장력볼트 의 전단파단은 발생하지 않은 것으로 판단한다. 그러므로 제

안한 접합부상세를 갖는 전단탭이 없는 상·하부 스플릿 티 접합부는 충분한 전단력 지지능력을 갖는 것으로 판단한다. 따라서 제안한 접합부상세를 갖는 전단탭이 없는 상·하부 스플릿 티 접합부는 적용하기에 타당한 것으로 판단한다.

3.2 상·하부 스플릿 티 접합부의 에너지소산능력

3차원 비선형 유한요소해석을 통하여 얻은 각 접합부 해 석모델의 휨모멘트-회전각 관계 이력곡선은 Fig. 6과 같다. 휨모멘트-회전각 관계 이력곡선의 내부면적에 해당하는 에

•

Fig. 6. Moment-Rotation hysterisis curve of double split tee connections

너지소산능력 E_{d} 은 Table 9에 정리하였다. Table 9에서 나 타난 것과 같이 상·하부 스플릿 티 접합부의 플랜지 두께가 증가함에 따라 최대변형에너지가 증가함을 알 수 있다. 한 편, 각 접합부 해석모델의 휨모멘트 지지능력은 Table 4의

Analytical models	$E_{d,}$
G110-T11-SI	86.8255
G110-T15-SI	103.8740
G110-T19-SI	113.5250
G110-T11-SX	76.7566
G110-T15-SX	99.2410
G110-T19-SX	100.9010

 Table 9. Energy dissipation capacity of double split tee connections

(a) Energy dissipation capacity of double split tee connection with a shear tap

(b) Energy dissipation capacity of double split tee connection without a shear tap

Fig. 7. Energy dissipation capacity according to the T-stub flange thickness variation

설계휨강도에 비해 각 접합부는 충분한 휨강도와 에너지소 산능력을 갖는 것을 알 수 있다. 따라서 제안한 접합부상세 를 갖는 전단탭이 없는 상·하부 스플릿 티 접합부는 적용하 기에 타당한 것으로 판단한다. Fig. 7에 나타난 것과 같이 상·하부 스플릿 티 접합부의 T-stub 플랜지 두께 변화에 따 른 에너지소산능력, E_a 은 아래의 Eq'n (18)과 Eq'n (19)와 같이 정리된다.

$$E_{d_r} = -0.6508t_f^2 + 22.5409t_f - 92.4513,$$

전단탭이 없는 경우 (19)

4. 결 론

이 연구는 전단탭이 없는 상·하부 스플릿 티 접합부에 대 한 접합부상세를 제안하기 위하여 진행하였다. 또한, 제안 한 접합부상세로 구성된 상·하부 스플릿 티 접합부가 충분 한 강도, 강성, 에너지소산능력을 발현할 수 있는지 파악하 기 위하여 유한요소 해석을 통하여 해석적 연구를 진행하였 다. 이 연구를 통하여 다음과 같은 결론을 얻었다.

- (1) 전단탭이 지지하는 전단력을 부담하기 위하여 제안된 상·하부 스플릿 티 접합부의 접합부상세는 충분한 휨강 도를 발현하였다. 또한, 하부 T-stub에 체결된 고장력 볼트의 전단파단이 발생하지 않았기 때문에 충분한 전단 강도도 발현하는 것을 알 수 있다.
- (2) 반복하중을 받는 전단탭이 없는 상·하부 스플릿 티 접합 부는 충분한 에너지소산능력을 발현하였다. 각 접합부 의 휨강도 및 휨강성은 상대적으로 T-stub 플랜지의 두 께가 두꺼울수록 더 크다는 것을 알 수 있다.
- (3) 전단탭이 없는 T-stub 플랜지 두께가 얇은 상·하부 스 플릿 티 접합부는 T-stub 플랜지의 휨항복 후 소성변형 에 의하여 파괴되었다. 반면에, T-stub 플랜지의 두께 가 증가함에 따라서 하부 T-stub에 체결된 고장력볼트 의 응력집중현상도 증가되었다.

감사의 글

이 연구는 한국연구재단의 지원(과제번호: NRF-2013 R1A1A2008363)에 의하여 수행된 과제의 일부입니다. 이에 논문의 저자들은 깊은 감사의 말씀을 전합니다.

참고문헌(References)

- [1] 김희동, 양재근, 이재윤, 이형동(2014) 상·하부 T-Stub 접 합부의 초기회전강성 평가, 한국강구조학회논문집, 한국 강구조학회, 제26권, 제2호, pp.133-142.
 Kim, H.D., Yang, J.G., Lee, J.Y., and Lee, H.D. (2014) Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection, *Journal of Korean Society of Steel Construction*, KSSC, Vol.26, No.2, pp.133-142 (in Korean).
- [2] 양재근, 김주우, 김윤(2012) 상·하부 스플릿 T 접합부의 휨 강도 설계식, 한국강구조학회논문집, 한국강구조학회, 제 24권, 제5호, pp.511-520.
 Yang, J.G., Kim, J.W., and Kim, Y. (2012) Design Formula for the Flexural Strength of a Double Split Tee Connection, *Journal of Korean Society of Steel Construction*,

KSSC, Vol.24, No.5, pp.511-520 (in Korean).
[3] 양재근, 김윤, 박재호(2012) 상·하부 스플릿 T 접합부의 초 기회전강성 예측모델, 한국강구조학회논문집, 한국강구

조학회, 제24권, 제3호, pp.279-287. Yang, J.G., Kim, Y., and Park, J.H. (2012) Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection, *Journal of Korean Society of Steel Construction*, KSSC, Vol.24, No.3, pp.279-287 (in Korean).

- [4] Faella, C., Piluso, V., and Rizzano, G. (2000) Structural Steel Semirigid Connections: Theory, Design and Software, CRC Press, UK.
- [5] Kulak, G.L., Fisher, J.W., and Struik, J.H.A. (2001) Guide to Design Criteria for Bolted and Riveted Joints (2nd Ed.), American Institute of Steel Construction, USA.
- [6] Yang, J.-G., Park, J.-H., Choi, J.-H., and Kim, S.-M. (2011) Characteristic Behavior of a T-Stub Connection Under Shear, Including the Effects of Prying Action and Bolt Pretension, *Proceedings of 6th International Symposium* on Steel Structures, KSSC, Korea, pp.1086-1092.
- [7] Yang, J.-G., Kim, H.-K., Park, J.-H., Baek, M.-C. (2013) Analytical Models for the Initial Axial Tensile Stiffness

and Ultimate Tensile Load of a T-Stub, Including the Effects of Prying Action, *International Journal of Steel Structures*, KSSC, Vol.13, No.2, pp.341-352.

- [8] SAC Joint Venture (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings (FEMA-350), Federal Emergency Management Agency, USA.
- [9] Astaneh-Asl, A. (1985) Procedure For a Design and Analysis of Hanger-Type Connections, *Engineering Journal*, American Institute of Steel Construction, Vol.22, No.2, pp. 63-66.
- [10] Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-Stubs, I: Theoretical Model, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.127, No.6, pp.686-693.
- [11] Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-Stubs, II: Model Validation, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.127, No.6, pp.694-704.
- [12] Swanson, J.A. (2002) Ultimate Strength Prying Models for Bolted T-Stub Connections, *Engineering Journal*, American Society of Civil Engineers, Vol.39, No.3, pp. 136-147.
- [13] Swanson, J.A., Kokan, D.S., and Leon, R.T. (2002) Advanced Finite Element Modeling of Bolted T-Stub Connection Components, *Journal of Constructional Steel Research*, Elsevier, Vol.58, pp.1015-1031.
- [14] Thornton, W.A. (1985) Prying Action: A General Treatment, *Engineering Journal*, American Institute of Steel Construction, Vol.22, No.2, pp.67-75.
- [15] Coelho, A.M.G., da Silva, L.S., and Bijlaard, F.S.K. (2004) Characterization of the Nonlinear Behaviour of Single Bolted T-Stub Connections, *Connections in Steel Structures V (Proceedings of the 5th International Workshop on Connections)*, American Institute of Steel Construction/ European Convention for Constructional Steel, Netherlands, pp.53-64.
- [16] Coelho, A.M.G., da Silva, L.S., and Bijlaard, F.S.K. (2006) Finite-Element Modeling of the Nonlinear Behavior of Bolted T-Stub Connections, *Journal of Structural Engineering*, American Society of Civil Engineers, Vol.132, No. 6, pp.918-928.
- [17] Lemonis, M.E., and Gantes, C.J. (2006) Incremental Modeling of T-Stub Connections, *Journal of Mechanics of Materials and Structures*, Mathematical Sciences Publishers, Vol.1, No.7, pp.1135-1159.
- [18] Stankiewicz, B. (2002) Experimental Tests of T-Stub

Joints and Refined Finite Element Method Computer Model, *Proceedings of EUROSTEEL 2002: The 3rd European Conference on Steel Structures (Vol. 2)*, European Convention for Constructional Steel, Portugal, pp.927-936.

기 호(Notation)

- A_b : 고장력볼트의 공칭단면적 (mm^2)
- A_{gv} : 전단면의 총 단면적(mm²)
- A_{nv} : 전단면의 순단면적(mm²)
- A_{nt} : 인장면의 순단면적(mm²)
- a : 고장력볼트 중심축과 T-stub 플랜지 끝 단 사이의 거리(mm)
- b : 고장력볼트 볼트구멍 끝단과 T−stub 스템 면 사이
 의 거리(mm)
- b_f : T-stub 플랜지 폭(mm)
- b_T : T-stub 플랜지 분절의 길이(mm)
- *d*,*d*_{beam} : 보의 춤(mm)
- d_b : 고장력볼트의 직경(mm)
- *d_c* : 기둥의 폭(mm)
- E : 강재의 탄성계수(N/mm²)
- E_h : 강재의 할선계수(N/mm²)

- F_{u} : 강재의 인장강도(N/mm²)
- F_{uT} : 고장력볼트의 공칭인장강도(N/mm²)
- F_y : 강재의 항복강도(N/mm²)
- F_{yT} : 고장력볼트의 공칭항복강도(N/mm²)
- F_{nv} : 고장력볼트의 전단강도(N/mm²)
- g_t : T-stub의 고장력볼트 게이지 거리(mm)
- g_t' : 볼트구멍을 제외한 T-stub의 고장력볼트 게이지 거리(mm)
- n_{tb} : 인장볼트의 총 개수
- L_c : 최단 고장력볼트의 순 거리(mm)
- p : 고장력볼트의 피치(mm)
- r : 필릿 반경(mm)
- S1
 : 기둥 외면으로부터 T-stub 스템 첫 번째 고장력볼

 트 중심간 거리(mm)
- S₂ : T-stub 스템 고장력볼트 사이 거리(mm)
- S₃ : T-stub 스템 양끝단 고장력볼트 사이 거리(mm)
- t : 부재의 두께(mm)
- twc : 기둥 웨브의 두께(mm)
- $t_{f}, t_{fT,fl}$: T-stub 플랜지의 두께(mm)
- $t_s, t_{T,stem}$: T-stub 스템의 두께(mm)
- ϵ_u : 강재의 인장 변형률
- ϵ_{y} : 강재의 항복 변형률

요 약: 상·하부 스플릿 티 접합부는 보·기둥 모멘트 접합부로써 T-stub 플랜지의 두께, 고장력볼트의 게이지 거리, 고장력볼트의 개수 및 직경 등의 영향에 따라서 상이한 거동특성을 나타낸다. 상·하부 스플릿 티 접합부는 일반적으로 접합부에 작용하는 휨모멘트는 T-stub이 지지하고 전단력은 전단탭이 지지하는 것으로 이상화되어 설계되고 있다. 그러나 중·저층 규모의 강구조물에 상·하부 스플릿 티 접합부가 적용되는 경우, 작은 규격의 보 부재가 적용될 수 있기 때문에 보 웨브에 전단탭을 설치하지 못하는 경우가 발생할 수 있다. 이 연구는 이와 같이 보 웨브에 전단탭을 설치하지 못하는 경우가 발생할 수 있다. 이 연구는 이와 같이 보 웨브에 전단탭을 설치할 수 없는 기하학적 형상을 갖는 상·하부 스플릿 티 접합부가 충분한 전단력 지지능력을 갖도록 하는 접합부 상세를 제안하기 위하여 진행하였다. 이를 위하여 상·하부 스플릿 티 접합부에 대한 3차원 비선형 유한요소해석을 수행하였다.

핵심용어 : 상·하부 스플릿 티 접합부, 전단지지능력, 전단탭, 접합부상세